Cognome e no	ome			Firma	ι	Matricol	a	
Corso di Laur	ea:	♦ AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	♦ MATLT	\Diamond MECLT	
Sezione:	♦ SI	EZIONE I	♦ SEZIONE	Z II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- $6.\,$ CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{4+x^2}} - \frac{1}{2}\arctan\frac{x}{2}$$

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|1 + i\sqrt{3}|z = 0$

$$z^4 - i|1 + i\sqrt{3}|z = 0$$

sono date da

$$Risp.: \boxed{\mathbf{A}} : 0, \ \sqrt[3]{2}(\frac{\sqrt{3}}{2} - \frac{i}{2}), \ \sqrt[3]{2}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ -\sqrt[3]{2}i \quad \boxed{\mathbf{B}} : 0, \ \sqrt[3]{2}(\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ \sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ -\sqrt[3]{2}i \quad \boxed{\mathbf{C}} : 0, \ \sqrt[3]{2}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{2}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{2}i \quad \boxed{\mathbf{D}} : 0, \ \sqrt[3]{2}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{2}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{2}i$$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan \frac{7}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos \frac{7}{n})}$$

vale

$$Risp.: \boxed{\mathbf{A}} : +\infty \quad \boxed{\mathbf{B}} : \tfrac{1}{7} \quad \boxed{\mathbf{C}} : -\tfrac{1}{7} \quad \boxed{\mathbf{D}} : 0$$

$$\boxed{\mathrm{B}}: \frac{1}{7} \boxed{\mathrm{C}}:$$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3} \left(1+\frac{1}{n}\right)^{(\beta-1)n^2}$$
 converge se e solo se

Risp.: $\boxed{\mathbf{A}}: \beta \leq 1 \quad \boxed{\mathbf{B}}: \beta > 1 \quad \boxed{\mathbf{C}}: \beta \geq 1 \quad \boxed{\mathbf{D}}: \beta < 1$

$$\boxed{\mathrm{B}}:\beta>1$$

$$|C|: \beta > 1$$

$$\boxed{\mathrm{D}}:\beta<1$$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 1, \\ (x-1)^{\alpha} \sin \sqrt[3]{(x-1)} & \text{se } x > 1. \end{cases}$$

Allora f è derivabile in x = 1 se e solo se

 $Risp.: \boxed{\mathbf{A}}: \alpha > \tfrac{2}{3} \quad \boxed{\mathbf{B}}: \alpha < \tfrac{2}{3} \quad \boxed{\mathbf{C}}: \alpha \geq \tfrac{2}{3} \quad \boxed{\mathbf{D}}: \alpha \leq \tfrac{2}{3}$

$$> \frac{2}{3}$$
 B: $\alpha < \frac{2}{3}$

$$\boxed{\mathbf{C}}: \alpha \geq \frac{2}{3}$$

$$\boxed{\mathrm{D}}: \alpha \leq \frac{2}{3}$$

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh \frac{7}{x} \left(\sinh \frac{7}{x} - \sin \frac{7}{x}\right)}{e^{\frac{7}{x}} - 1 - \log\left(1 + \frac{7}{x}\right)}$$

vale

 $Risp.: \boxed{\mathbf{A}} : +\infty \quad \boxed{\mathbf{B}} : 0 \quad \boxed{\mathbf{C}} : 7 \quad \boxed{\mathbf{D}} : 7\sqrt{2}$

$$\boxed{\mathrm{D}}:7\sqrt{2}$$

6. Sia
$$\mathcal{F}$$
 la primitiva di $f(x) = \frac{e^{3x} - 2e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare $F(1)$

$$\mathbf{B}$$

$$\boxed{\mathrm{C}}:+\infty$$

$$\textit{Risp.:} \ \boxed{\mathbf{A}} : 2 \quad \boxed{\mathbf{B}} : 1 \quad \boxed{\mathbf{C}} : +\infty \quad \boxed{\mathbf{D}} : e + 3(\tfrac{\pi}{4} - \arctan e)$$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 2. \end{cases}$$

Allora $y(\sqrt{2})$ vale

Risp.: $A : 2\sqrt{2}$ $B : 4e^{-1}$ C : 4 D : 0

$$\boxed{\mathrm{B}} : 4e^{-1}$$

$$\boxed{\mathrm{C}}:4$$

$$\boxed{\mathbf{D}}:\mathbf{0}$$

Cognome e no	ome			Firma	ι	Matricol	a	
Corso di Laur	ea:	♦ AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	♦ MATLT	\Diamond MECLT	
Sezione:	♦ SI	EZIONE I	♦ SEZIONE	Z II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- $6.\,$ CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{9+x^2}} - \frac{1}{2}\arctan\frac{x}{3}$$

(a) Determinare il dominio di f ed eventuali simmetrie.

Risposta [punti 0,5]:

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|2 + i\sqrt{5}|z = 0$

$$z^4 - i|2 + i\sqrt{5}|z = 0$$

sono date da

Risp.: $\boxed{\mathbf{A}} : 0, \ \sqrt[3]{3}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{3}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{3}i \quad \boxed{\mathbf{B}} : 0, \ \sqrt[3]{3}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{3}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{3}i$ $\boxed{\mathbf{C}}: 0, \sqrt[3]{3}(\frac{\sqrt{3}}{2} - \frac{i}{2}), \sqrt[3]{3}(\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{3}i \boxed{\mathbf{D}}: 0, \sqrt[3]{3}(\frac{1}{2} + \frac{\sqrt{3}}{2}i), \sqrt[3]{3}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), -\sqrt[3]{3}i$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan\frac{6}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos\frac{6}{n})}$$

vale

Risp.: $\boxed{\mathbf{A}} : -\frac{1}{6} \quad \boxed{\mathbf{B}} : 0 \quad \boxed{\mathbf{C}} : +\infty \quad \boxed{\mathbf{D}} : \frac{1}{6}$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3} \left(1+\frac{1}{n}\right)^{(\beta-2)n^2}$$

converge se e solo se

Risp.: $\boxed{\mathbf{A}}: \beta > 2 \quad \boxed{\mathbf{B}}: \beta < 2 \quad \boxed{\mathbf{C}}: \beta \leq 2 \quad \boxed{\mathbf{D}}: \beta \geq 2$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 2, \\ (x-2)^{\alpha} \sin \sqrt[5]{(x-2)} & \text{se } x > 2. \end{cases}$$

Allora f è derivabile in x = 2 se e solo se

 $\textit{Risp.:} \ \boxed{\textbf{A}}: \alpha \leq \frac{4}{5} \quad \boxed{\textbf{B}}: \alpha \geq \frac{4}{5} \quad \boxed{\textbf{C}}: \alpha > \frac{4}{5} \quad \boxed{\textbf{D}}: \alpha < \frac{4}{5}$

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh\frac{6}{x} \left(\sinh\frac{6}{x} - \sin\frac{6}{x}\right)}{e^{\frac{6}{x}} - 1 - \log\left(1 + \frac{6}{x}\right)}$$

vale

 $Risp.: \overline{\mathbf{A}} : 6\sqrt{2} \quad \overline{\mathbf{B}} : 6 \quad \overline{\mathbf{C}} : +\infty \quad \overline{\mathbf{D}} : 0$

6. Sia \mathcal{F} la primitiva di $f(x) = \frac{e^{3x} - 4e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare F(1)

Risp.: $\boxed{\mathbf{A}} : e + 5(\frac{\pi}{4} - \arctan e) \quad \boxed{\mathbf{B}} : 2 \quad \boxed{\mathbf{C}} : +\infty \quad \boxed{\mathbf{D}} : 5$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 3. \end{cases}$$

Allora $y(\sqrt{2})$ vale

Risp.: A : 5 B : 0 $C : 2\sqrt{2}$ $D : 5e^{-1}$

Cognome e no	ome			Firma	ι	Matricol	a	· · ·
Corso di Laur	ea: 〈	> AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	\Diamond MATLT	♦ MECLT	
Sezione:	♦ SE	EZIONE I	♦ SEZIONE	II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- $6.\,$ CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{16 + x^2}} - \frac{1}{2}\arctan\frac{x}{4}$$

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|3 + i\sqrt{7}|z = 0$

$$z^4 - i|3 + i\sqrt{7}|z = 0$$

sono date da

$$\begin{aligned} Risp.: \boxed{\mathbf{A}} : 0, \ \sqrt[3]{4}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{4}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{4}i \quad \boxed{\mathbf{B}} : 0, \ \sqrt[3]{4}(\frac{\sqrt{3}}{2} - \frac{i}{2}), \ \sqrt[3]{4}(\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{4}i \quad \boxed{\mathbf{C}} : 0, \\ \sqrt[3]{4}(\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ \sqrt[3]{4}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), -\sqrt[3]{4}i \quad \boxed{\mathbf{D}} : 0, \ \sqrt[3]{4}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{4}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{4}i \end{aligned}$$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan\frac{5}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos\frac{5}{n})}$$

vale

Risp.: $\boxed{\mathbf{A}} : +\infty \quad \boxed{\mathbf{B}} : 0 \quad \boxed{\mathbf{C}} : \frac{1}{5} \quad \boxed{\mathbf{D}} : -\frac{1}{5}$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3} \left(1+\frac{1}{n}\right)^{(\beta-3)n^2}$$

converge se e solo se

Risp.: $\boxed{\mathbf{A}}: \beta > 3 \quad \boxed{\mathbf{B}}: \beta \geq 3 \quad \boxed{\mathbf{C}}: \beta \leq 3 \quad \boxed{\mathbf{D}}: \beta < 3$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 3, \\ (x-3)^{\alpha} \sin \sqrt[7]{(x-3)} & \text{se } x > 3. \end{cases}$$

Allora f è derivabile in x = 3 se e solo se

 $\textit{Risp.:} \ \boxed{\mathbf{A}} : \alpha \leq \tfrac{6}{7} \quad \boxed{\mathbf{B}} : \alpha > \tfrac{6}{7} \quad \boxed{\mathbf{C}} : \alpha < \tfrac{6}{7} \quad \boxed{\mathbf{D}} : \alpha \geq \tfrac{6}{7}$

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh \frac{5}{x} \left(\sinh \frac{5}{x} - \sin \frac{5}{x}\right)}{e^{\frac{5}{x}} - 1 - \log\left(1 + \frac{5}{x}\right)}$$

vale

Risp.: $\boxed{\mathbf{A}} : 0 \quad \boxed{\mathbf{B}} : 5\sqrt{2} \quad \boxed{\mathbf{C}} : +\infty \quad \boxed{\mathbf{D}} : 5$

6. Sia \mathcal{F} la primitiva di $f(x) = \frac{e^{3x} - 6e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare F(1)

Risp.: $\boxed{\mathbf{A}}: +\infty \quad \boxed{\mathbf{B}}: e + 7(\frac{\pi}{4} - \arctan e) \quad \boxed{\mathbf{C}}: 8 \quad \boxed{\mathbf{D}}: 3$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 4. \end{cases}$$

Allora $y(\sqrt{2})$ vale

Risp.: $A : 2\sqrt{2}$ B : 0 $C : 6e^{-1}$ D : 6

Cognome e non	ne		Firma	ι	Matricol	a	•
Corso di Laure	a: \diamondsuit AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	♦ MATLT	\Diamond MECLT	
Sezione:	♦ SEZIONE I	♦ SEZIONE	: II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- $6.\,$ CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{25 + x^2}} - \frac{1}{2}\arctan\frac{x}{5}$$

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|4 + 3i|z = 0$ sono date da

$$z^4 - i|4 + 3i|z = 0 \qquad \text{sono date}$$

Risp.:
$$\boxed{\mathbf{A}}: 0, \ \sqrt[3]{5}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{5}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ -\sqrt[3]{5}i \quad \boxed{\mathbf{B}}: 0, \ \sqrt[3]{5}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{5}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \ \sqrt[3]{5}i \quad \boxed{\mathbf{C}}: 0, \ \sqrt[3]{5}(\frac{\sqrt{3}}{2} - \frac{i}{2}), \ \sqrt[3]{5}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ -\sqrt[3]{5}i \quad \boxed{\mathbf{D}}: 0, \ \sqrt[3]{5}(\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ \sqrt[3]{5}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ -\sqrt[3]{5}i$$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan\frac{4}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos\frac{4}{n})}$$

vale

$$Risp.: \overline{\mathbf{A}} : -\frac{1}{4} \overline{\mathbf{B}} : \frac{1}{4} \overline{\mathbf{C}} : +\infty \overline{\mathbf{D}} : 0$$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3} \left(1+\frac{1}{n}\right)^{(\beta-4)n^2}$$
 converge se e solo se

Risp.: \boxed{A} : $\beta < 4$ \boxed{B} : $\beta \ge 4$ \boxed{C} : $\beta \le 4$ \boxed{D} : $\beta > 4$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 4, \\ (x-4)^{\alpha} \sin \sqrt[9]{(x-4)} & \text{se } x > 4. \end{cases}$$

Allora f è derivabile in x = 4 se e solo se

 $\textit{Risp.:} \ \boxed{\textbf{A}}: \alpha \leq \frac{8}{9} \quad \boxed{\textbf{B}}: \alpha \geq \frac{8}{9} \quad \boxed{\textbf{C}}: \alpha > \frac{8}{9} \quad \boxed{\textbf{D}}: \alpha < \frac{8}{9}$

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh \frac{4}{x} (\sinh \frac{4}{x} - \sin \frac{4}{x})}{e^{\frac{4}{x}} - 1 - \log(1 + \frac{4}{x})}$$

 $Risp.: \boxed{\mathbf{A}} : 4 \quad \boxed{\mathbf{B}} : 0 \quad \boxed{\mathbf{C}} : +\infty \quad \boxed{\mathbf{D}} : 4\sqrt{2}$

6. Sia
$$\mathcal{F}$$
 la primitiva di $f(x) = \frac{e^{3x} - 8e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare $F(1)$

vale

Risp.: $\boxed{\mathbf{A}} : +\infty \quad \boxed{\mathbf{B}} : 11 \quad \boxed{\mathbf{C}} : 4 \quad \boxed{\mathbf{D}} : e + 9(\frac{\pi}{4} - \arctan e)$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 5. \end{cases}$$

Allora $y(\sqrt{2})$ vale

Risp.: $\boxed{A}: 0 \quad \boxed{B}: 7e^{-1} \quad \boxed{C}: 2\sqrt{2} \quad \boxed{D}: 7$

Cognome e no	ome			Firma	ι	Matricol	a	· · ·
Corso di Laur	ea: 〈	♦ AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	\Diamond MATLT	♦ MECLT	
Sezione:	♦ SE	EZIONE I	♦ SEZIONE	II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- $6.\,$ CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{36 + x^2}} - \frac{1}{2}\arctan\frac{x}{6}$$

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|5 + i\sqrt{11}|z = 0$

$$z^4 - i|5 + i\sqrt{11}|z = 0$$

sono date da

$$Risp.: \boxed{\mathbf{A}} : 0, \sqrt[3]{6}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \sqrt[3]{6}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), \sqrt[3]{6}i \quad \boxed{\mathbf{B}} : 0, \sqrt[3]{6}(\frac{\sqrt{3}}{2} - \frac{i}{2}), \sqrt[3]{6}(\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{6}i \quad \boxed{\mathbf{C}} : 0, \sqrt[3]{6}(\frac{1}{2} + \frac{\sqrt{3}}{2}i), \sqrt[3]{6}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), -\sqrt[3]{6}i \quad \boxed{\mathbf{D}} : 0, \sqrt[3]{6}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \sqrt[3]{6}(-\frac{\sqrt{3}}{2} + \frac{i}{2}), -\sqrt[3]{6}i$$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan\frac{3}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos\frac{3}{n})}$$

vale

$$Risp.: \overline{\mathbf{A}} : -\frac{1}{3}$$

Risp.:
$$\boxed{\mathbf{A}} : -\frac{1}{3} \quad \boxed{\mathbf{B}} : 0 \quad \boxed{\mathbf{C}} : \frac{1}{3} \quad \boxed{\mathbf{D}} : +\infty$$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2 + 1}{n^3} \left(1 + \frac{1}{n} \right)^{(\beta - 5)n^2}$$

converge se e solo se

Risp.: $\boxed{\mathbf{A}}: \beta \geq 5 \quad \boxed{\mathbf{B}}: \beta \leq 5 \quad \boxed{\mathbf{C}}: \beta < 5 \quad \boxed{\mathbf{D}}: \beta > 5$

$$\boxed{\mathrm{B}}:\beta\leq 5$$

$$\boxed{\mathbf{C}}: \beta < 5$$

$$\boxed{\mathrm{D}}: \beta > 5$$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 5, \\ (x-5)^{\alpha} \sin \sqrt[11]{(x-5)} & \text{se } x > 5. \end{cases}$$

Allora f è derivabile in x = 5 se e solo se

 $Risp.: \boxed{\mathbf{A}}: \alpha > \frac{10}{11} \quad \boxed{\mathbf{B}}: \alpha \leq \frac{10}{11} \quad \boxed{\mathbf{C}}: \alpha < \frac{10}{11} \quad \boxed{\mathbf{D}}: \alpha \geq \frac{10}{11}$

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh \frac{3}{x} \left(\sinh \frac{3}{x} - \sin \frac{3}{x}\right)}{e^{\frac{3}{x}} - 1 - \log\left(1 + \frac{3}{x}\right)}$$

Risp.: $\boxed{\mathbf{A}}: +\infty \quad \boxed{\mathbf{B}}: 3\sqrt{2} \quad \boxed{\mathbf{C}}: 0 \quad \boxed{\mathbf{D}}: 3$

6. Sia \mathcal{F} la primitiva di $f(x) = \frac{e^{3x} - 10e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare F(1)

Risp.: $\boxed{\mathbf{A}}: 5 \quad \boxed{\mathbf{B}}: +\infty \quad \boxed{\mathbf{C}}: e + 11(\frac{\pi}{4} - \arctan e) \quad \boxed{\mathbf{D}}: 14$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 6. \end{cases}$$

Allora $y(\sqrt{2})$ vale

 $Risp.: \boxed{\mathbf{A}} : 8e^{-1} \quad \boxed{\mathbf{B}} : 8 \quad \boxed{\mathbf{C}} : 0 \quad \boxed{\mathbf{D}} : 2\sqrt{2}$

Cognome e no	ome			Firma	ι	Matricol	a	· · ·
Corso di Laur	ea: 〈	♦ AMBLT	♦ AUTLT	♦ CIVLT	\Diamond GESLT	\Diamond MATLT	♦ MECLT	
Sezione:	♦ SE	EZIONE I	♦ SEZIONE	II				

- 1. COMPILARE la parte soprastante la prima riga continua. In particolare, scrivere cognome e nome *in stampatello* e la firma sopra la riga punteggiata.
- 2. Per lo studio di funzione: SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. Per i quesiti a risposta chiusa: SEGNARE nella tabella riportata in questa pagina, in modo incontrovertibile, la lettera corrispondente alla risposta scelta per ognuna delle domande; in caso di correzione, apporre un "SI" vicino alla risposta scelta.
- 4. PUNTEGGI per i quesiti a risposta chiusa: risposta esatta = +3; risposta sbagliata = -0.5; risposta non data = 0.
- 5. PROIBITO usare libri, quaderni, calcolatori.
- 6. CONSEGNARE IL FOGLIO CONTENENTE LA GRIGLIA DELLE RISPOSTE con TUTTI I FOGLI DELLO SVOLGIMENTO
- 7. TEMPO a disposizione: 150 min.

1.	2.	3.	4.	5.	6.	7.
A	A	A	A	A	A	A
В	В	В	В	В	В	В
С	С	С	С	С	С	С
D	D	D	D	D	D	D

Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \frac{x}{\sqrt{49 + x^2}} - \frac{1}{2}\arctan\frac{x}{7}$$

(b)	Calcolare i limiti alla frontiera del dominio e determinare eventuali asintoti (verticali, orizzontali, obliqui) per f . Risposta [punti 1,5]:
(c)	Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità. Risposta [punti 1]:
(d)	Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f . Risposta [punti 2]:
(e)	Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando gli eventuali punti di flesso per f . Risposta [punti 2]:
(f)	Tracciare un grafico della funzione f , in accordo con i risultati ottenuti. Risposta [punti 2]:

1. Le soluzioni dell'equazione $z^4 - i|6 + i\sqrt{13}|z = 0$ sono date da

$$z^4 - i|6 + i\sqrt{13}|z = 0$$

$$\sqrt[3]{7(\frac{\sqrt{3}}{2} + \frac{i}{2})}, \sqrt[3]{7(-\frac{\sqrt{3}}{2} + \frac{i}{2})}, -\frac{\sqrt{3}}{2}$$

$$\boxed{\mathbf{C}}: 0, \ \sqrt[3]{7}(\frac{1}{2}+\frac{\sqrt{3}}{2}i), \ \sqrt[3]{7}(-\frac{1}{2}+\frac{\sqrt{3}}{2}i), \ -\sqrt[3]{7}i \quad \boxed{\mathbf{D}}: 0, \ \sqrt[3]{7}(\frac{\sqrt{3}}{2}-\frac{i}{2}), \ \sqrt[3]{7}(\frac{\sqrt{3}}{2}+\frac{i}{2}), \ -\sqrt[3]{7}i$$

2. Il limite

$$\lim_{n \to +\infty} \frac{\sqrt{\arctan\frac{2}{n} + n} - \sqrt{n}}{\sqrt{n}(1 - \cos\frac{2}{n})}$$

vale

$$Risp.: \overline{\mathbf{A}} : \frac{1}{2} \overline{\mathbf{B}} : 0 \overline{\mathbf{C}} : -\frac{1}{2} \overline{\mathbf{D}} : +\infty$$

$$C: -\frac{1}{2}$$

$$\boxed{\mathrm{D}}:+\infty$$

3. Dato
$$\beta \in \mathbb{R}$$
, la serie numerica
$$\sum_{n=1}^{+\infty} \frac{n^2 + 1}{n^3} \left(1 + \frac{1}{n} \right)^{(\beta - 6)n^2}$$

converge se e solo se

Risp.: $\boxed{\mathbf{A}}: \beta \leq 6 \quad \boxed{\mathbf{B}}: \beta < 6 \quad \boxed{\mathbf{C}}: \beta \geq 6 \quad \boxed{\mathbf{D}}: \beta > 6$

$$\boxed{\mathrm{B}}:\beta<6$$

$$\boxed{\mathbf{C}}: \beta \geq 6$$

$$\boxed{\mathrm{D}}: \beta > 6$$

4. Siano $\alpha > 0$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & \text{se } x \le 6, \\ (x-6)^{\alpha} \sin \sqrt[13]{(x-6)} & \text{se } x > 6. \end{cases}$$

Allora f è derivabile in x = 6 se e solo se

 $\textit{Risp.:} \ \boxed{\textbf{A}}: \alpha \geq \tfrac{12}{13} \quad \boxed{\textbf{B}}: \alpha < \tfrac{12}{13} \quad \boxed{\textbf{C}}: \alpha \leq \tfrac{12}{13} \quad \boxed{\textbf{D}}: \alpha > \tfrac{12}{13}$

$$B : \alpha < \frac{12}{13}$$

$$C: \alpha \leq \frac{12}{13}$$

$$\boxed{D} : \alpha > \frac{12}{13}$$

vale

5. Il limite

$$\lim_{x \to +\infty} \frac{3x \cosh \frac{2}{x} (\sinh \frac{2}{x} - \sin \frac{2}{x})}{e^{\frac{2}{x}} - 1 - \log(1 + \frac{2}{x})}$$

Risp.: A : 0 $B : 2\sqrt{2}$ C : 2 $D : +\infty$

$$\boxed{\mathrm{B}}:2\sqrt{2}$$

$$\boxed{\mathrm{C}}:2$$

$$D: +\infty$$

6. Sia \mathcal{F} la primitiva di $f(x) = \frac{e^{3x} - 12e^x}{1 + e^{2x}}$ tale che $\mathcal{F}(0) = 1$. Calcolare F(1)

Risp.:
$$\boxed{\mathbf{A}} : 6 \quad \boxed{\mathbf{B}} : e$$

Risp.:
$$\boxed{\mathbf{A}}$$
: 6 $\boxed{\mathbf{B}}$: $e + 13(\frac{\pi}{4} - \arctan e)$ $\boxed{\mathbf{C}}$: $+\infty$ $\boxed{\mathbf{D}}$: 17

$$\boxed{\mathbf{C}}:+\infty$$

7. Sia y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' + xy = x^3, \\ y(0) = 7. \end{cases}$$

Allora $y(\sqrt{2})$ vale

Risp.: A : 0 B : 9 $C : 2\sqrt{2}$ $D : 9e^{-1}$

$$\boxed{{
m D}} : 9e^{-1}$$