LIMITE DI SUCCESSIONI

L'operazione di limite consente di rispondere in forma rigorosa alla domanda "Come si comportano i valori di una successione $\{a_n\}$, al crescere dell'indice n?"

Esempio:
$$a_n = \frac{2^n + 1}{2^{n+1}}$$
, $n = 0, 1, ...$

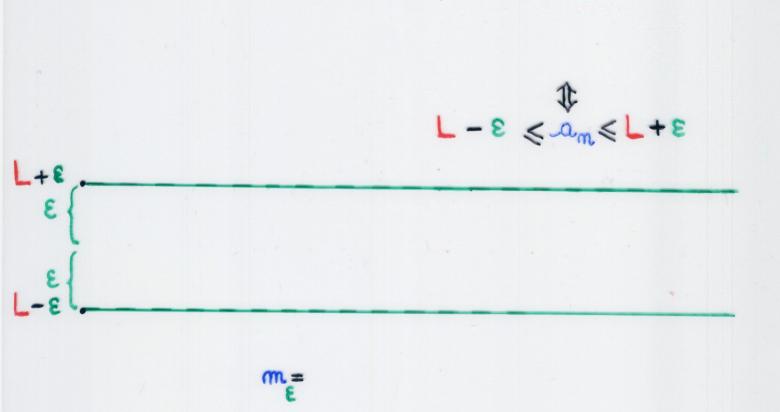
m	0	1	2	3	4	5	6	7	8	9
an	1	0.75	0.63	0.5625	0.5313	0.5156	0.5078	0.5039	0.502	0.501
lam-L1	0.5	0.25	0.13	0.0625	0.0313	0.0156	0.0078	0.0039	0.002	0.001

Qualitativamente: I valori a_n si "avvicinano" in modo "progressivo" al "valore limite" L=0.5.

Def. $\{a_n\}$ converge $ad L \in \mathbb{R}$, quando:

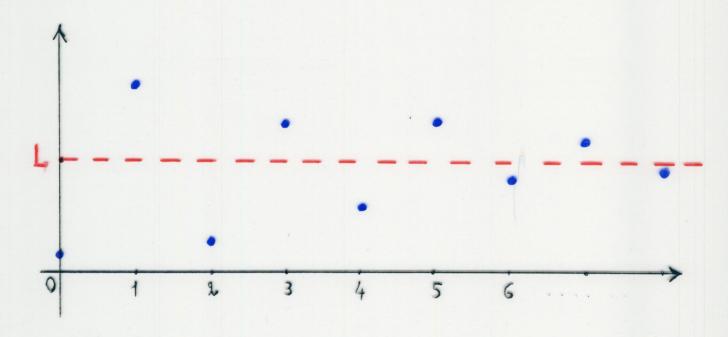
$$\forall \varepsilon > 0 \quad \exists m_{\varepsilon} \in \mathbb{N} : \forall n \geq m_{\varepsilon}, |a_n - L| \leq \varepsilon.$$

L si dice limite della successione $\{a_n\}$, e si scrive $\lim_{n\to +\infty} a_n = L$ oppure $a_n\to L$, $n\to +\infty$.



Interpretazione grafica di $\lim_{n \to +\infty} a_n = \underline{L}$

$$\forall \underline{\varepsilon} > 0 \quad \exists m_{\underline{\varepsilon}} \in \mathbb{N} : \forall n \ge m_{\varepsilon}, |a_n - \underline{L}| \le \varepsilon.$$
 (1)



Osservazioni:

- L'intero m_{ε} dipende dalla soglia ε prefissata (tipicamente, tanto più piccolo è ε , tanto più grande dovrà essere m_{ε})
- Non è restrittivo limitarsi a verificare la condizione (1) soltanto per tutti gli ε minori o uguali ad una prefissata soglia ε_0 > (sufficientemente piccola)

Verifica formale del limite:
$$\lim_{n\to+\infty} \frac{2^n+1}{2^{n+1}} = \frac{1}{2}$$

Dobbiamo verificare che

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} \in \mathbb{N} : \ \forall n \ge m_{\varepsilon} \left| \frac{2^{n}+1}{2^{n+1}} - \frac{1}{2} \right| \le \varepsilon$$

Fissato un $\varepsilon>0$ arbitrario, consideriamo la disuguaglianza finale

$$\left|\frac{2^n+1}{2^{n+1}}-\frac{1}{2}\right|\leq \varepsilon. \tag{2}$$

Obiettivo: determinare un intero $m_{\varepsilon} \in \mathbb{N}$ tale che per tutti gli interi $n \geq m_{\varepsilon}$ la disuguaglianza (2) sia verificata.

Strategia: "risolviamo" la (2) rispetto ad n:

$$\left|\frac{2^n+1}{2^{n+1}} - \frac{1}{2}\right| \le \varepsilon \iff \left|\frac{2^n+1-2^n}{2^{n+1}}\right| = \frac{1}{2^{n+1}} \le \varepsilon$$

$$\Leftrightarrow 2^{n+1} \ge \frac{1}{\varepsilon} \Leftrightarrow n+1 \ge \log_2 \frac{1}{\varepsilon} \Leftrightarrow n \ge \log_2 \frac{1}{\varepsilon} - 1.$$

Indichiamo con $m_{arepsilon}$ un numero intero positivo tale che:

$$m_{\varepsilon} \ge \log_2 \frac{1}{\varepsilon} - 1$$

(un tale numero $m_{\varepsilon} \in \mathbb{N}$ esiste certamente, poiché \mathbb{R} è un campo Archimedeo), allora

$$n \ge m_{\varepsilon} \Rightarrow \left| \frac{2^n + 1}{2^{n+1}} - \frac{1}{2} \right| \le \varepsilon.$$

Dunque l'intero m_{ε} , definito come sopra, ci permette di conseguire l'obiettivo preposto. Data l'arbitrarietà dell' ε prefissato nel ragionamento, quanto precede dimostra la validità del limite.