Una stima migliore è la seguente

SOTTOSUCCESSIONI

Def. $\{b_n\}$ è <u>sottosuccessione</u> di $\{a_n\}$ se $\exists f: \mathbb{N} \to \mathbb{N}$ strettamente crescente tale che

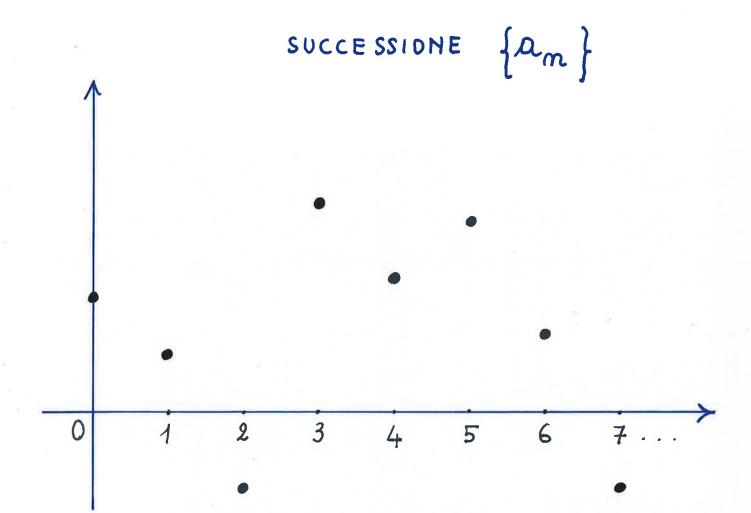
(VKEIM, f(K) < f(K+1)) $b: \mathbb{N} \xrightarrow{\mathcal{A}} \mathbb{R}$ $b_k = a_{f(k)}$. $k \mapsto f(k) \mapsto \mathcal{A}_{f(k)} = b_k$

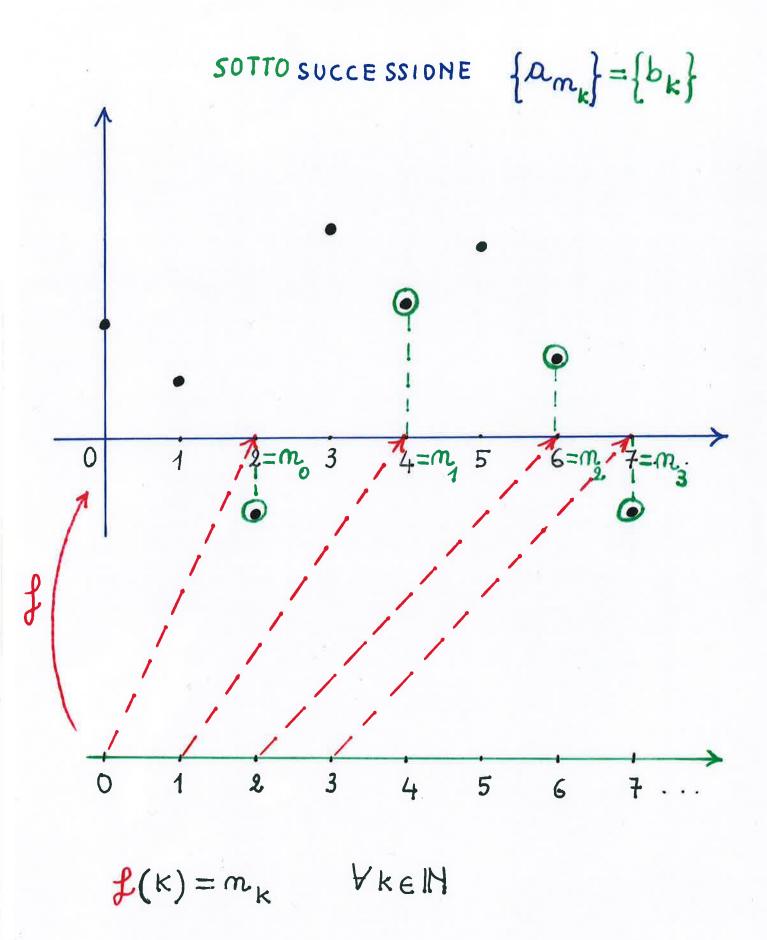
In genere si scrive n_k invece di f(k), per cui

$$b_k = a_{n_k}.$$

NOTA: si ha $\lim_k f(k) = +\infty$.

ESEMPI: $\{4n^2\}$ è sottosuccessione della successione $\{n^2\}$ (prendendo f(n) = 2n); $a_m = m^2$ $\Rightarrow a_m = (2k)^2 - 4k^2$ La successione costante $\{1\}$ è sottosuccessione della successione $\{(-1)^n\}$ (prendendo f(n) = 2n, ma anche f(n) = 6n). $a_m = (-1)^m$ $\Rightarrow a_m = (-1)^{2k} = 1$ $f(k) = m_k = 2k$





SOTTO SUCCE SSIONE
$$\{a_{m_k}\}=\{b_k\}$$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$
 $\{a_{m_k}\}=\{b_k\}$

$$\forall k \in \mathbb{N}$$
 $f(k) = m_k < f(k+1) = m_{k+1}$

{am}

 a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} ...

$$\{a_{m_k}\}$$

$$(a_0)$$
 (a_1) a_2 a_3 (a_4) a_5 a_6

$$a_7$$
 a_8 (a_9) a_{10} a_{11} ...

$$f(k) = m_k = k^2$$

$$(a_0)$$
 a_1 (a_2) a_3 (a_4) a_5 (a_6) a_7 (a_8) a_9 (a_{10}) (a_{11}) \dots

$$f(K) = m_K = \ell K$$

$$\{a_{m_{k}}\}$$

$$f(K) = m_K = 2K + 1$$

Teorema. $a_n \to L \Longrightarrow a_{n_k} \to L \ \forall \ sottosuccessione \ \{a_{n_k}\} \ di \ \{a_n\}.$

Dim. Sia I intorno di L e m_0 t.c. $\forall n \geq m_0$ si ha $a_n \in I$. Dato che $\lim_k n_k = +\infty$, $\exists m \in \mathbb{N}$ t.c. $\forall k \geq m$ si ha $n_k \geq m_0$. Allora

$$a_{n_k} \in I \quad \forall k \ge m.$$

Corollario Importante. Se $\exists \{a_{n_k}\}\ e \{a_{n'_k}\}\ due$ sottosuccessioni di $\{a_n\}$ tali che

$$a_{n_k} \to L$$
 $a_{n'_k} \to L'$

e $L \neq L'$, allora $\{a_n\}$ oscilla.

ESEMPIO: $\{(-1)^n\}$ oscilla: infatti $(-1)^{2n} = 1 \to 1$, e $(-1)^{2n+1} = -1 \to -1 \neq 1$.

Teorema. (BOLZANO-WEIERSTRASS) Da ogni successione limitata si può estrarre una sottosuccessione convergente.

Dim. $\{a_n\}$ limitata $\iff \exists M > 0: |a_n| < M \ \forall n \iff \exists M > 0: -M < a_n < M \ \forall n.$

Dobbiamo costruire una successione crescente di interi $\{n_k\}$. Poniamo $n_0=0$. Costruiamo per induzione n_k .

Illustriamo la costruzione di n_1 . Poniamo $I_0 = [b_0, c_0] = [-M, M]$, e dividiamo I_0 nei due intervalli [-M, 0] e [0, M]. In almeno uno di questi due intervalli devono cadere termini della successione a_j per infiniti indici j. Scegliamo $I_1 = [b_1, c_1]$ con questa proprietà e poniamo

$$n_1 = \min\{j : a_j \in I_1, j > 0\}.$$

Nel caso generale si procede allo stesso modo: definiti $I_k = [b_k, c_k]$ e n_k tali che $a_{n_k} \in I_k$ e in I_k cadono termini a_j per infiniti indici j, si divide a metà l'intervallo I_k in due intervalli della stessa ampiezza e si sceglie $I_{k+1} = [b_{k+1}, c_{k+1}]$ uno dei due intervalli in cui cadono termini a_j per infiniti indici j. Quindi si pone

$$n_{k+1} = \min\{j: a_j \in I_{k+1}, j > n_k\}.$$

È chiaro che la successione n_k è strettamente crescente e dunque $\{a_{n_k}\}$ è una sottosuccessione di $\{a_n\}$. Per costruzione abbiamo

$$-M \le \ldots \le b_{k-1} \le b_k \le a_{n_k} \le c_k \le c_{k-1} \le \ldots \le M.$$

Dalla monotonia e dalla limitatezza segue che le successioni b_k, c_k sono convergenti. Poiché $|c_k - b_k| = M2^{-k+1}$, esse convergono allo stesso limite L. Infine da $b_k \leq a_{n_k} \leq c_k$, segue che anche $a_{n_k} \to L$.

IL CRITERIO DI CAUCHY

OSSERVAZIONE: Sia $\{a_n\}$ una successione convergente a L. Valutiamo la differenza

$$|a_n - a_{n'}| = |a_n - L + L - a_{n'}| \le |a_n - L| + |L - a_{n'}|.$$

Per ipotesi $\{a_n\}$ converge, ossia $\forall \varepsilon > 0 \; \exists \; m \in \mathbb{N} \; \text{t.c.} \; \forall n, n' \geq m \quad |a_n - L| \leq \varepsilon \; \text{e}$ $|a_{n'} - L| \leq \varepsilon$. Segue allora che

$$|a_n - a_{n'}| \le 2\varepsilon.$$

Per l'arbitrarietà di ε si può concludere che, per le successioni convergenti vale la seguente CONDIZIONE di CAUCHY.

Def. La successione
$$\{a_n\}$$
 è di Cauchy se $\forall \varepsilon > 0 \exists m \in \mathbb{N} : \forall n, n' \geq m \mid |a_n - a_{n'}| \leq \varepsilon$ (*).

NEGAZIONE DI (*): $\exists \mathcal{E}_o > o : \forall m \in \mathbb{N} \exists m, m' \geqslant m, |\alpha_m - \alpha_{m'}| > \mathcal{E}_o$ ESEMPIO: le successioni $\{(-1)^n\}$ e $\{n^2\}$ non sono di Cauchy. $\exists \mathcal{E}_o = 1 : \forall m \in \mathbb{N} \exists m, m' \geqslant m \in |(-1)^m - (-1)^m'| \ge 1$ $\forall m \in \mathbb{N} \exists m$

$$a_n \to L \implies \text{vale } (*).$$

Teorema (Criterio di Cauchy). Condizione necessaria e sufficiente affinchè una successione reale converga è che essa sia di Cauchy.

Dim. (Condizione sufficiente) Sia $\{a_n\}$ di Cauchy. Dobbiamo mostrare che $\{a_n\}$ è convergente. Dividiamo la dimostrazione in passi successivi.

 1° passo. Ogni successione $\{a_n\}$ di Cauchy è limitata.

Per provarlo scegliamo nella definizione $\varepsilon = 1$; allora $\exists m$ t.c. $\forall n \geq m$ si ha $|a_n - a_m| \leq 1$. Da questo segue $|a_n| \leq |a_m| + 1 \ \forall n \geq m$. Dunque

$$|a_n| \le \max\{|a_0|, |a_1|, \dots, |a_{m-1}|, |a_m| + 1\} \qquad \forall n \ge 0$$

e perciò la successione è limitata.

- 2^o passo. Poichè $\{a_n\}$ è limitata, per il teorema di Bolzano-Weierstrass, se ne può estrarre una sottosuccessione $\{a_{n_k}\}$ tale che $a_{n_k} \to L \in \mathbf{R}$.
- 3^o passo. Se $\{a_n\}$ è una successione di Cauchy con una sottosuccessione convergente $a_{n_k} \to L$ allora anche $a_n \to L$.

Fissato $\varepsilon > 0$ sia N t.c. $\forall k \geq N$ sia $|L - a_{n_k}| \leq \varepsilon$ e anche, usando la definizione di successione di Cauchy, tale che n_N sia così grande che $\forall n \geq n_N$ si abbia $|a_{n_N} - a_n| \leq \varepsilon$. Allora $\forall n \geq n_N$ si ha

$$|a_n - L| \le |a_{n_N} - a_n| + |L - a_{n_N}| \le 2\varepsilon. \quad \Box$$

OSSERVAZIONE: La sufficienza della condizione di Cauchy per la convergenza di una successione è equivalente alla completezza, in IR.

- **1.** ESEMPIO. Sia $\{x_n\} \subset \mathbf{Q}$ una successione convergente a $\sqrt{2}$. Poiché la successione è convergente in \mathbf{R} , essa è di Cauchy in \mathbf{R} (e dunque anche in \mathbf{Q}). Però non è convergente in \mathbf{Q} .
- 2. $\{a_m\}$, $a_m = (1 + \frac{1}{m})^m \in \mathbb{Q} \ \forall m > 1$, e' di Cauchy in \mathbb{R} (in \mathbb{Q}). He converge ad $e \in \mathbb{R} \setminus \mathbb{Q}$.

Insiemi densi e successioni

Gli insiemi \mathbf{Q} e $\mathbf{R} \setminus \mathbf{Q}$ sono densi in \mathbf{R} ; ovvero: se x < y, allora gli insiemi

$$\{z \in \mathbf{Q} : x < z < y\} \ e \ \{z \in \mathbf{R} \setminus \mathbf{Q} : x < z < y\}$$

sono infiniti. Ne consegue che dato un qualsiasi $x \in \mathbf{Q}$ esistono successioni $\{x_n\} \subset \mathbf{Q}$ e $\{y_n\} \subset \mathbf{R} \setminus \mathbf{Q}$ tali che

$$x_n \to x, \quad y_n \to x.$$

Analogamente, dato un qualsiasi $y \in \mathbf{R} \setminus \mathbf{Q}$ esistono successioni $\{x'_n\} \subset \mathbf{Q} \in \{y'_n\} \subset \mathbf{R} \setminus \mathbf{Q}$ tali che

$$x'_n \to y, \qquad y'_n \to y.$$