ASINTOTI

• Si dice che la retta $x=x_0$ $(x_0\in\mathbb{R})$ è un asintoto $verticale\ destro$ (oppure $asintoto\ verticale\ sinistro$) per una funzione f=f(x) quando $\lim_{x\to x_0^+} f(x)=\pm\infty$ (oppure $\lim_{x\to x_0^-} f(x)=\pm\infty$).

Si dice che la retta $x=x_0$ è $asintoto\ verticale$ per una funzione f=f(x), quando tale retta è asintoto verticale destro oppure sinistro per f.

- Si dice che la retta $y = \ell$ ($\ell \in \mathbb{R}$) è $asintoto \ orizzontale \ a + \infty$ (oppure $asintoto \ orizzontale \ a \infty$) per una funzione f = f(x), quando $\lim_{x \to + \infty} f(x) = \ell$ (oppure $\lim_{x \to \infty} f(x) = \ell$).
- Si dice che la retta y=mx+q $(m\in\mathbb{R},m\neq 0,\ q\in\mathbb{R})$ è $asintoto\ obliquo\ a+\infty$ (oppure $asintoto\ obliquo\ a-\infty$) per una funzione f=f(x), quando $\lim_{x\to +\infty} \left[f(x)-(mx+q)\right]=0$ (oppure $\lim_{x\to -\infty} \left[f(x)-(mx+q)\right]=0$).

Metodo per la ricerca dell'asintoto obliquo.

Supponiamo che $\lim_{x\to +\infty} f(x) = \pm \infty$. Se si verifica che:

1.
$$\lim_{x \to +\infty} \frac{f(x)}{x} = m \in \mathbb{R} \setminus \{0\}$$
 ,

2.
$$\lim_{x \to +\infty} \left[f(x) - mx \right] = q \in \mathbb{R}$$
 ,

allora y = mx + q è asintoto obliquo a $+\infty$ per f.

Un analogo risultato vale per l'asintoto obliquo a $-\infty$, se si sostituiscono tutti i limiti a $+\infty$ con i corrispondenti limiti a $-\infty$ nell'enunciato suddetto.